- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Baiz, Carlos R (1)
-
Cardenas, Alfredo E (1)
-
Chen, Xiaobing (1)
-
Elber, Ron (1)
-
Hudson, Rose B (1)
-
Senning, Eric N (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Phosphatidylinositides constitute only 1%–3% of plasma membranes but play vital roles in cellular signaling. In particular, phosphatidylinositol 4,5-bisphosphate (PIP2) is involved in processes such as cytoskeleton organization and ion channel regulation. Pleckstrin homology (PH) domains are modular domains found in many proteins and are known for their strong affinity for PIP2 headgroups. The role of lipid composition in PH domain binding to PIP2, particularly the inclusion of phos phatidylserine (PS), is not well understood. This study explores the mechanisms of PH domain binding to PIP2 using fluores cence spectroscopy, Fourier transform infrared spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations. We find that anionic PIP2 and PS alter the interfacial environment compared to phosphatidylcholines. Additionally, the PH domain promotes the localization of anionic lipid domains upon binding. Our results highlight the role of PSinlipid domain formation within membranes and its potential influence on protein binding affinities and lipid geometries. Spe cifically, we discovered a strong interaction between PIP2 and PS whereby hydrogen bonding within these anionic lipids drives localization in the membrane. This interaction also regulates protein binding at the membrane interface. Our findings suggest that cooperativity between PIP2 and PS is key to the formation of localized lipid domains and the recruitment of proteins such as the PH domain of phospholipase C-d1more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
